Desibeli

Radioamatööriwikistä
Versio hetkellä 2. huhtikuuta 2022 kello 20.03 – tehnyt Oh6va (keskustelu | muokkaukset) (siivousta)
(ero) ← Vanhempi versio | Nykyinen versio (ero) | Uudempi versio → (ero)
Siirry navigaatioon Siirry hakuun

Desibeli (dB) on belin kymmenesosa. Beli on "yksikötön" suhdemitta, joka kuvaa suhdelukua kahden mitatun samaa yksikköä olevan suureen välillä 10-kantaisella (Briggsin) logaritmilla lausuttuna (tehosuureissa):

Tämä matemaattinen suhde mahdollistaa yksinkertaiset yhteen- ja vähennyslaskut, kun halutaan selvittää systeemissä eri kohdissa olevia tehoja (kuten radioamatöörit tekevät.)

Desibelillä on paljon johdannaisia, alkuperäinen (josta nimikin tulee) liittyi äänisignaalin voimakkuuden mittaamiseen puhelinjärjestelmässä. Historiasta ja muista johdannaisista lisää Wikipedian englanninkielisessä Decibel artikkelissa. Jäljempänä tässä artikkelissa viitataan radioamatöörien tarvitsemiin johdannaisiin.

Tätä artikkelin osaa on pyydetty täydennettäväksi.
Voit auttaa Radioamatööriwikiä parantamalla artikkelia. Lisää tietoa saattaa olla keskustelusivulla.
Merkinnän syy: Tarvitaan yleis- /helppotajuisempi kuvaus

Elektroniikassa

(Wikipedian englanninkielisen Decibel artikkelin elektroniikkaosan valikoiva ja mukaileva suomennos)

Desibeliä käytetään aritmeettisten suhteiden, tai prosenttilukujen tilalla, koska tietynlaisissa sarjakytkennöissä (mm. vahvistimet ja vaimentimet) ketjun läpi on helpompi laskea tehotasoja kun ne ilmaistaan desibeleinä suhteessa johonkin refrenssitasoon ja kerto-/jakolaskujen sijasta voidaan tehdä laskut yhteen- ja vähennyslaskuina.

Radioteknisessä elektroniikassa desibeli kertoo kahden mitatun sähköisen tehon suhteesta. Se voidaan täsmentää lisäämällä lyhenteeseen "m" milliwatille josta tulee dBm. Nolla dBm on yksi milliwatti ja 1 dBm on yhden desibelin suurempi, kuin 0 dBm, eli noin 1,259 mW.

Vaikkakin desibelit määriteltiin alunperin tehojen suhteille, nykyisin niitä käytetään elektroniikassa myös kuvaamaan jännitteiden tai virtojen suhteita. Vakiosuuruisen resistiivisen kuorman yli mitattu teho on suhteessa jännitteiden neliöön (ks. Ohmin laki: P=U2/R). Siksi kahden jännitteen desibelisuhde on määritelty:

Näin jännitteiden suhde 2,0 vastaa 6,02 dB:tä, eikä 3,01 dB:tä, kuten se on teholla!

Tämä käytäntö on täysin yhdenmukainen tehopohjaisiin desibeleihin, kunhan piirin resistanssi säilyy muuttumattomana.

Edellä sanotusta huolimatta jännitepohjaisia desibelejä käytetään usein vertailuissa, joissa mittauskohtien resistanssit ovat erilaisia. Esimerkiksi tilanteessa jossa yksikkövahvistuksinen puskurivahvistin jolla on korkea ottoimpedanssi ja matala(mpi) antoimpedanssi sanotaan olevan "0 dB jännitevahvistus", vaikkakin se tosiasiassa tuottaa selvän tehovahvistuksen ajaessaan matalampi-impedanssista kuormaa. Vaikkakin tuo on pedanttisesti ajatellen tuomittavaa, se on tosiasiassa hyvin yleinen käytäntö ja näyttää sellaisena säilyvänkin.

Esimerkkejä

suhde   dB       suhde   dB       suhde   dB
1:1000 000 -60,00 1:1 0,00 10:1 10,00
1:1000 -30,00 2:1 3,01 20:1 13,01
1:100 -20,00 3:1 4,77 50:1 16,99
1:50 -16,99 4:1 6,02 100:1 20,00
1:20 -13,01 5:1 6,99 1000:1 30,00
1:10 -10,00 6:1 7,78 1000 000:1 60,00

Radioamatööritutkinnossa

Radioamatööritutkinnossa desibelilaskuja on käytännössä vain T2-modulin kokeessa. Laskut liittyvät tehotasoihin, jolloin pätevät yksinkertaiset muistisäännöt:

 3 dB = tehon kaksinkertaistuminen (tai puolittuminen)
10 dB = tehon kymmenkertaistuminen (tai tippuminen kymmenesosaan)

Käyttäen näitä muistisääntöjä ei tarvitse välttämättä opetella logaritmilaskentaa (tai laskimen logaritmien käyttöä).

Esimerkki T2-kysymyspankista (kysymys 58020):

7 MHz:n sähkötyslähettimen (A1A) kantoaaltoteho on 400 W. Harhalähetteiden
vaimennusvaatimusten täyttämiseksi (10 mW) on toista harmonista
vaimennettava kantoaaltoa pienemmäksi vähintään

  a) 40 dB
  b) 43 dB
  c) 46 dB
  d) 50 dB

On siis laskettava tehotasojen välinen ero desibeleissä. Yksi tapa lähestyä asiaa on laskea tehotasojen välinen suhde ja muuttaa se desibeleiksi. Tehojen suhde on tässä siis 400 W / 0,01 W = 40000. Luvussa on neljä nollaa ja haluamme niistä ensimmäiseksi eroon, joten siirrämme pilkkua vasemmalle, eli jaamme 10:llä, neljä kertaa, desibeleinä 10+10+10+10 = 40 dB. Tässä vaiheessa siis suhdelukuna on 40000/10/10/10/10 = 4 ja desibelejä on "varastossa" 40. Tavoitteemme on suhdeluku 1, joten puolitamme nelosen kahdesti, 4/2 = 2 ja 2/2 = 1, desibeleinä 3+3 = 6 dB. Yhteensä siis 40+6 = 46 dB, eli kysymyksen c-kohta on oikein.

Toinen, pohjimmiltaan sama, tapa on lähteä jommasta kummasta tehotasosta ja kertoa tai jakaa sitä kahdella tai kymmenellä kunnes toinen tehotaso saavutetaan. Jos lähdemme 0,01 W:stä (10 mW) voisimme kertoa sen ensin kahdesti kakkosella, 0,01 W * 2 * 2 = 0,04 W, eli teho on noussut 3+3 dB = 6 dB. Tässä kohtaa huomaamme, että 0,04 W:stä päästään 400 W:hen 10:llä tarpeeksi usein kertoen, siis pilkkua siirtämällä. Siirrämme siis pilkkua neljä kertaa oikealle: 0,04 W * 10 * 10 * 10 * 10 = 400 W, eli 10+10+10+10 dB = 40 dB. Yhteensä siis taas 40+6 dB = 46 dB.

Desibelilaskennassa todellakin siirrytään kerto- ja jakolaskuista yhteen- ja vähennyslaskuihin. (Taustoja on kerrottu logaritmi-artikkelissa.)

Aina laskut eivät mene "tasan" kahdella/kymmenellä kerrottaviksi/jaettaviksi, jolloin voidaan käyttää yllämainittuja muistisääntöjä niin lähelle kuin helposti päästään ja arvioida loppuosaa. Tämä arvioitava loppuosa on alle 3 desibeliä, koska säännöllä "3 dB = 2-kertaistuminen" päästään aina korkeintaan kolmen desibelin päähän. Käytännössä useimmiten lasketaan kokonaisilla desibeleillä, koska erot tehotasoissa ovat yleensä niin suuria, ettei desibelin murto-osat ole kovin merkitseviä kokonaiskuvan kannalta.

Antenniasioissa on myös hyvä muistaa dBd:n ja dBi:n välinen suhde. dBd on dBi:tä n. 2.7 dB:tä suurempi perustaso antennin vahvistukselle (esim. 10 dBi antennin vahvistus on n. 7 dBd).

Johdannaisia

Jotta esimerkiksi mitattu radioteho (tms.) olisi jotenkin mielekäs, pitää määritellä suhdetaso johon sitä verrataan, näin muodostuu varsin runsas kokoelma erilaisia mittalukuja, joista tärkeimmät radiokäytössä ovat:

  • dBm - Desibelimilliwatti
  • dBW - Desibeliwatti
  • dBk - Desibelikilowatti - QRO miehille...
  • dBu, dBµV - Desibelimikrovoltti
  • dBV - Desibelivoltti
  • dBd - Desibeliä suhteessa dipoliin; antennin suuntaavuuden mittaluku
  • dBi - Desibeliä suhteessa (teoreettiseen) isotrooppiseen säteilijään; antennin suuntaavuuden mittaluku
  • dBc - Desibeliä suhteessa kantoaaltoon (carrier)

Kun insinöörit (ja muutkin hamssit) puhuvat kummia, saattaa ilmetä esim tällaisia mittoja:

  • dB€ - "lasku oli 33,5 dB€:a"

Katso myös

https://en.wikipedia.org/wiki/Decibel

https://fi.wikipedia.org/wiki/Desibeli